
CMR-1309 Project Plan for Search Relevancy Improvements
Link to white paper: ImprovingSearchRelevanceintheCommonMetadataRepository.docx

1. Develop the test setgold standard

This test set will be used to evaluate the performance of the CMR with respect to relevancy.

1.1 Take a snapshot of the current production collections. - 2h

This can initially consist of an actually copy of the elastic index, but will eventually need to be in a more compact form that can be used in testing
without requiring Elasticsearch.

1.2 Create a set of queries that cover the information space of the collections, i.e., queries that when
combined together would pull back all the collections. - 4h

1.3 Identify the collections that should be returned by each query in the set - preferably ranked in
order of most relevant to least. - 1.5D

This is likely to be an iterative process and will require cooperation from the subject experts, e.g., DAACs.

2. Compute baseline metrics

2.1 Write code to compute metrics given the gold standard set and an actual search result set using
the metrics discussed in the or other metrics as deemed appropriate. - 14Dwhite paper

2.1.1 Precision & Recall - 2D

2.1.1 F-Measure & Weighted F-Measure - 1D

2.1.2 Area Under Curve (AUC) - 3D

2.1.2.1 AUC numeric calculation - 1D

2.1.2.2 AUC plot - 2D

2.1.3 AP Correlation - 3D

2.1.4 Rank Biased Overlap - 3D

This code should be implemented as a library that can be re-used in the sand box application.

2.2 Execute the gold standard queries against the collections snapshot. - 1D

2.2.1 Store the results as the .baseline results

2.3 Use the baseline results, gold standard, and code from 2.1 to compute the baseline

metrics. - 0.5D

2.3.1 Store the baseline metrics with the baseline results

3. Develop the sandbox application

https://wiki.earthdata.nasa.gov/download/attachments/47875134/ImprovingSearchRelevanceintheCommonMetadataRepository.docx?version=1&modificationDate=1426885684253&api=v2
http://ImprovingSearchRelevanceintheCommonMetadataRepository.docx

3.1 Design Java interface with an API to allow scoring of a collection model (UMM?) for a given query -
2D

3.1.1 Scores should be a float value between 0 and 1.

3.2 Design and implement an application to read a config file, then use that config to load

implementations of the interface in 3.1 for various heuristics - 7D

3.2.1 Design - 2D

3.3.1 Implementation - 5D

3.3 Application should download gold standard set and sort it using weighted combination of scoring
implementations from 3.2

3.4 Application should compute metrics using the code from 2.1

4. Implement Data Content Search-Keyword heuristic as described by Chris Lynnes in

sandbox and compute metrics

TODO - break down and estimate these

5. Implement heuristic as described by Chris Lynnes inTemporal and Spatial Coverage

sandbox and compute metrics

- Need more detail about scoring - does a collection that more closes covers the search area get a higher relevance than a much larger one that
intersects the same area?

- TODO - break these into two different heuristics and then break these down and estimate

- Can we re-use CMR code here?

6. Prototype

6.1 CMR Elasticsearch plugin for heuristics

Plugin should reuse code from sandbox application and heuristics implementations - 11D

6.1.1 Setup plugin - 1.5D

6.1.2 Implementation -

6.1.2.1 Reimplement keyword heuristic for elastic plugin - 2D

6.1.2.2 Reimplement temporal heuristic for elastic plugin - 1D

7. Test prototype with heuristics in the workload environment - 2.5D

7.1 Collect query performance (speed) metrics. - 2D

7.2 Compute impact of changes on query times (difference between baseline and post change to

support heuristics) - 0.5

7.2.1 Verify query times remain sub-second to the 99th percentile.

Assumptions/Questions

Only search relevance for collection queries will be addressed in this approach.
Stakeholders will participate in creating the gold standard test set.
Heuristics can be added without significantly affecting query times.
None of the changes considered here have a significant impact on ingest times.
Do we want to maintain the sandbox past the prototype phase. Specifically should there be code sharing between the elastic search
plugin and the heuristics implementations so that the sandbox can be used for future testing and improvements to search relevancy. This
impacts the Elasticsearch implementation estimate.
Can the sandbox code re-use CMR code?
Will the sandbox code be shared through the ECC?
Who develops the heuristic implementations? Do we legitimately expect outside parties to do this?
Is it realistic that we are going to get participation from DAACs in generating the gold standard?

There is a significant risk to completion and improving results if we do not.
When must this be in production? What is the end result of the task we are estimating now? Is the goal to have the Elasticsearch plugin
in production at the end of this task or is it to have implemented and verified heuristics (improvements in relevancy)?

Additional thoughts:

The heuristics as described by Chris Lynnes can only sort collections that would already be returned by Elasticsearch. As such, if collections that
should be returned by a query are not, the heuristics will not help. They to move relevant results to the front, thereby increasing apparentcan help
recall, but they can't add things in that aren't there.

So, if we need to improve recall, we will have to look to other methods (adding additional fields to the aggregate keyword field, synonym
expansion, etc.).

Time permitting, we should implement heuristic sets as described in the white paper.

	CMR-1309 Project Plan for Search Relevancy Improvements

